Here is Donella Meadows explaining how your bathtub is like your bank account.
If you’re about to take a bath, you have a desired water level in mind. You plug the drain, turn on the faucet and watch until the water rises to your chosen level (until the discrepancy between the desired and the actual state of the system is zero). Then you turn the water off.
If you start to get in the bath and discover that you’ve underestimated your volume and are about to produce an overflow, you can open the drain for awhile, until the water goes down to your desired level.
Those are two negative feedback loops, or correcting loops, one controlling the inflow, one controlling the outflow, either or both of which you can use to bring the water level to your goal. Notice that the goal and the feedback connections are not visible in the system. If you were an extraterrestrial trying to figure out why the tub fills and empties, it would take awhile to figure out that there’s an invisible goal and a discrepancy-measuring process going on in the head of the creature manipulating the faucets. But if you watched long enough, you could figure that out.
Very simple so far. Now let’s take into account that you have two taps, a hot and a cold, and that you’re also adjusting for another system state — temperature. Suppose the hot inflow is connected to a boiler way down in the basement, four floors below, so it doesn’t respond quickly. And you’re making faces at yourself in the mirror and not paying close attention to the water level. And, of course, the inflow pipe is connected to a reservoir somewhere, which is connected to the whole planetary hydrological cycle. The system begins to get complex, and realistic, and interesting.
Mentally change the bathtub into your checking account. Write checks, make deposits, add a faucet that keeps dribbling in a little interest and a special drain that sucks your balance even drier if it ever goes dry. Attach your account to a thousand others and let the bank create loans as a function of your combined and fluctuating deposits, link a thousand of those banks into a federal reserve system — and you begin to see how simple stocks and flows, plumbed together, make up systems way too complex to figure out.